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Hybrid Systems

F.W. Vaandrager

1. INTRODUCTION

Hybrid systems are systems that intermix discrete and continuous compo-
nents, typically computers that interact with the physical world. Due to
the rapid development of processor and circuit technology, such systems
are becoming more and more common in all application domains, ranging
from avionics and process control to robotics and consumer electronics. The
specification, design and analysis of hybrid systems require a synthesis of
1deas, concepts, mathematical theories and tools that are currently spread
over distinct disciplines, most notably computer science and control theory.
The interest in the formal treatment of digital systems that interact with
an analog environment is certainly not new, but received a new impetus by
the extension of formal models from computer science with real-time around
1991 and by the explosion of embedded applications of computer technology
within our society. Today, the study of hybrid systems has grown into an
area of research with rapidly increasing popularity.

In this contribution, we will briefly sketch the development of this field.
Also, we will discuss recent work on hybrid systems in the group Concur-
rency and Real-time Systems at CWI.
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Figure 1. The 3D Biped robot, developed at MIT, hops, runs and performs tucked
somersaults. (Courtesy MIT Leg Laboratory.
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2. MOTIVATION

2.1. Embedded computer systems
With the decrease i th
1M OT

1

e and price of computing elements, more and
computers are used within real-world technical applications such as
111 avionics, process control, robotics, telecommunications and consumer
products

In all these ‘embedded’ applications it is software that determines to a
large extent the tunctionality of the products and that offers the required
dynamics and flexibility. This makes the construction of large real-time
embedded computer systems one of the most challenging tasks tacing the
computer science cominunity, it not the engineering community as a whole.

Characteristic of embedded computer systems i1s that th
they accept stimuli from the outside world and r
means that one can only desi
stems 1f one tak

©are reactrve:
act to those stimuli. This
n and reason about the correctness ot thes
he behaviour of the outside world into account. As
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an example, consider a computer controlling a chemical plant. Regularly.
the control program reads sensor data. such as temperature and pressure.
of the plant. Based on these data. the computer may decide to turn on
a heating system, switch off a pump. ete. When a dangerous situation
arises, for instance the pressure in a tank gets too high. the computer has to
mitiate appropriate action. like opening a valve. In order to formally prove

mathematical model needs to contain information about the wav in which
the chemical reactions take place, the pressure in the tank evolves. etc.
Iraditionally, computer scientists take a discrete view of the world: they
assume that both a computer system and its environment can be modelled
as a discrete event system. This assumption is justified and has proved to
be very successful within application areas such as operating svstems and
computer networks. However, we see more and more applications. in par-
ticular in the area of embedded computer systemns. in which modelling the
environment as a discrete process greatly distorts reality and may lead to
unreliable conclusions. Examples include the temperature in a thermostat-
1cally controlled room. hopping robots (see figure 1), and intellicent vehicle
and highway systems (IVHS) utilizing ‘platooning’ technigue. For these
applications, the continuous models for the real-world developed by physi-
cists and control engineers are typically more compact, more tractable and
more accurate than the discrete approximations computer scientists tend to
come up with. Since designing and reasoning about software for reactive
systems 1s only possible if one has a model for both the software and the en-
vironment i which it operates, this provides a real practical motivation for
the development of a comprehensive theory of hAybrid systems, i.e.. systems
consisting of a non-trivial mixture of discrete and continuous components.

2.2. The need for a theory

The need for such a theory has also been identified by the control commus-
nity. Inherently unstable applications such as flight by wire of an unstable
aircraft cannot be controlled by a classical control system emploving a sin-
gle control rule. The only solution, which is the one being implemented
today for such systems is a hybrid system, in which a digital controller
keeps switching between different continuous control laws or control modes
very rapidly.

T'he real-world 1s usually modeled by control engineers as a continuous
dynamical system, described in the language of functional analysis. Com-
puter scientists mvestigate the dynamics of discrete systems, described in
the language of mathematical logic. Since the construction of large embed-
ded computer systems will always involve representatives of both cultures,
a comprehensive theory of hybrid systems is required to avoid a Tower of
Babel. Such a theory must comprise a syvnthesis of ideas, concepts, mathe-
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matical theories and tools that are currently spread over several disciplines,
most notably computer science and control theory, but also electrical engi-
neering. mechanical engineering, physics and others.

Even though hybrid applications have been built in practice since the
beginning of the fifties. it is only since a few vears that the mathematical
study of hybrid systems is starting to receive the attention that it deserves.
Until the end of the seventies, most rescarch on program verification was
devoted to the analysis of programs for "autistic’ (i.e. nonreactive) sequen-
tial batch computers. The eighties have witnessed a revolution in the formal
methodology for the specification, verification, and development of reactive
programs (and more general reactive systems). Once the concept of a re-
active system was well understood, it turned out not to be so difficult to
bring quantitative, real-time aspects into the picture. Even though the de-
velopment ot reliable real-time systems will remain an important research
toplc for many years to come, several important theoretical results concern-
mg real-time systems were obtained by 1991. Around that time, the first
two nnportant workshops on hybrid systems were being organized in Ithaca,
NY, USA and Lyngby, Denmark, and triggered a rapidly increasing interest
in this new area, both in computer science and in applied mathematics.

Research on hybrid systems is part of the general effort to apply formal
methods in software development. Formal methods have been under de-
velopment since the mid-1960s, but it is in the last decade that significant
developments have evolved. and over the last few years interest in formal
methods has grown phenomenally. Highly publicized accounts of the appli-
cation of formal methods to a number of well-known systems, such as the
Darlington Nuclear Facility and Airbus, have helped to bring the industrial
application of formal methods to a wider audience (see also figure 2). Today
use of formal methods is required in the construction of software and digital
hardware for certain critical systems. A recent paper by W.W. Gibbs (2] in
Scientific American presents plenty of well-laid-out arguments and experi-
ences of formal methods. For an overview of the field we refer to the World
Wide Web page

http://www.comlab.ox.ac.uk/archive/formal-methods.html,

which contains numerous pointers to other electronic archives throughout
the world.

3. RESEARCH ON HYBRID SYSTEMS

3.1. Semantic models and logics

Several semantic models for hybrid systems have been proposed in the lit-
erature. Good starting point for reading are the Springer LNCS volume
3] and the recent Special Issue of Theoretical Computer Science [4]. Even
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SHUTDOWN

A hybrid automaton for a simple temperature controt system. The system controls the coolant temperature in a
reactor-tank by moving two independent control rods. The temperature of the coolant is represented by the variable
v Imtially vois 510 degrees, both rods are outside the reactor core and the system is in state NOROD. In this state
the temperature rises according to the differential equation ¥ = x/10-50 . If the temperature reaches 550 degrees.
three things can happen: either rod 1 s put into the reactor core and the automaton moves to state RODI, or rod 2
is put into the reactor core and the automaton moves 1o state ROD2, or a complete shutdown occurs and the auto-
maton moves to state SHUTDOWN., Mechanical factors make that a rod can only be placed in the core if it has
not been there for at least 20 seconds. Shutdown will only occur if no rod is available. In the automaton, variables
¢, and ¢4 are used to measure the times elapsed since the fast use of rod 1 and rod 2, respectively. The initial
alues of both ¢, and ¢, are set to 20 seconds, so that initially both rods are available. Since they represent per-
fect logical clocks, the first derivatives of ¢ and ¢, with respect to time are always equal to 1. Control rod | refri-
gerates the coolant according to the differential equation ¥ = x/10-56 ; control rod 2 has a stronger effect and
refrigerates the coolant according to the differential equation ¥ = x/10-60 . It the temperature has decreased to
510 degrees, the system moves back from state ROD1T or ROD2 to state NOROD, and variable ¢, Or ¢, respecti-
vely, 1s reset to 0. The correctness property for this system is not difficult to prove and says that the SHUTDOWN
state cannot be reached. (This example is from Leveson et al.)
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Core of High Flux Reactor
in Petten.
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though there are many differences between the approaches, there is a sur-
prising consensus that the behaviour of a hybrid system is best represented
as an alternating sequence of instantaneous ‘discrete’ actions and ‘continu-
ous’ phases during which time advances. Within the continuous phases the
system'’s variables vary continuously according to a control law. fixed for
the interval. Via the discrete actions the System can move to a new state,
where a new control law becomes valid.

T'his view of hybrid systems is highly compatible with the earlier computer
science semantic models for real-time systems: roughly speaking, the only
difference is that where in real-time models the only available information
about the continuous phases is the amount of time that passes, the hybrid
models allow one to use differential equations, etc., to specify how precisely
the system variables evolve in a continuous phase. Due to this similarity,
many semantic models for timed systems generalize smoothly to hybrid
systems. In several cases it is even possible to use verification techniques for
timed systems directly for hybrid systems. Also in the area of specification
logics many ideas generalize from timed to hybrid systems and logics such
as TCTL, ICTL, TLA and the calculus of durations are being used in both
settings.

3.2. Verification

However, there is a problem. Because the expressivity of the hybrid system
models is enormous, the verification problem for these models is Intrinsically
difficult, even under severe restrictions. Typically, verification problems
that are decidable in polynomial time for untimed systems (represented as
finite transition systems), become exponentially hard for timed systems,
and undecidable even for simple classes of hybrid systems. Much work
remains to be done to identify restricted classes of hybrid systems that on
the one hand are sufficiently expressive to model realistic applications in
the area of embedded systems, but on the other hand can be analyzed by
algorithmic means. A very promising line of research here is the work on
(semi) decision procedures and tools for (subclasses of) the so-called linear
hybrid automata of R. Alur et al. Two prototype tools have been developed,
the KRONOS tool in Grenoble and the HYTECH tool at Cornell. Using these
tools, their implementors have been able to verify automatically dozens of
toy examples proposed in the literature on hybrid systems, as well as some
practical examples from industry. The key idea behind these tools is to
represent infinite sets of states as convex polyhedra in multi-dimensional
space and to use standard data structures and geometric algorithms for
polyhedral manipulation to do reachability analysis and model checking.
Despite the recent successes, computer aided verification techniques for
linear hybrid automata will never become the solution to all industrial veri-
fication problems: they perform well in the case of small tricky circuits like
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the Philips audio control protocol analyzed at CWI, but are not designed to
face the immense timing problems that arise in larger applications, such as
control systems for sonar applications, air-trafhic, etc. Nevertheless, one can
envisage two 1mmportant uses of this work in a large-scale application. First,
the knowledge about (linear) hybrid automata will be useful in a mathemat-
ical formulation of the problem. Second, there will be 1solated situations
where the tools themselves can be applied.

Clearly, the work on semantic models, logics and verification methods
for hybrid systems is just starting. In the case of untimed discrete event
systems, a rich body of closely related theories has been created during the
last twenty years involving temporal and modal logics, assertional verifica-
tion methods, process algebras, and tools for computer aided verification.
Almost all of this work still needs to be lifted to (or at least related to) the
setting of hybrid systems.

3.3. Perspective from control theory

Besides computer science also control theory plays an important role in the
theory of hybrid systems, and thus we see for instance at CWI that both
the Computer Science group Concurrency and Real-time Systems, and the
Mathematics group System and Control Theory have become interested in
hybrid systems, and benefit from each others expertise. It 1s interesting
to note that the questions asked in control theory are quite different trom
those asked in computer science. Whereas in computer science there is much
emphasis on verification, control theory concentrates more on synthesis: it
aims at finding synthesis procedures for a supervisor that forces a discrete
event system such that it satisfies prespecified control objectives. A well-
known theory of ‘supervisory control’ for untimed discrete event systems
has been developed by P.J. Ramadge and W.M. Wonham. There are a few
applications of this theory, but more experience must be gained and the
model needs to be refined before it will become really useful in practice.
Interesting approaches to the control of timed systems are proposed by O.
Maler, A. Pnueli and J. Sifakis, and by H. Wong-Toi and G.J. Hoffman.

In traditional control system theories stability is an important perfor-
mance criterion. Here stability means that for the controlled system, small
changes in input and relevant parameters yield small changes in output. All
theories of stability of continuous systems are topologically based. In the
design of discrete event systems it is very difficult to come up with a similar
notion of stability: in software engineering it i1s well known that replacing
a ‘) by a ‘.’ can have a dramatic impact on the behaviour of almost any
program. Kohn’s theory of declarative control is an attempt to define a
notion of stability for hybrid systems, using non-Hausdorft subtopologies of
the usual topologies for continuous systems.

Networks of continuous devices have been studied by control engineers

311



312

F V. VAANDRAGER

for a long time and some hybrid system models build directly on this long
tradition. It is important to relate these models to the automaton based
models proposed by computer scientists.

5.4. Specification and implementation of embedded systems

Virtually all of the specification languages that are currently used by com-
puter scientists to formally specify software systems have a discrete event
semantics and are not directly suitable for the formal specification and anal-
ysis of hybrid systems. (Examples of such languages are VDM, Z. COLD-1
and LOTOS.) A possible exception is the language Funmath, a declarative
formalism for describing systems with both analog and digital components,
that has been developed in Nijmegen by R.T.G.M. Boute and his team.

[t one leafes through a document with a state-of-the-art specification of
an embedded software system, one encounters a mixture of architecture di-
agrams, programming text, flow charts, transition tables, diagrams by elec-
trical engineers with IC’s, transistors, resistors, etc., and diagrams made
by mechanical engineers in which the mechanical parts of the system are
described. The relations between the various parts of the specification are
only described by informal text, there is no such thing as a commmon seman-
tic framework for all the design notations that are used. This is undesir-
able, since in the design of embedded systems hardware and software are
more and more viewed as interchangeable: often mechanical and electronic
implementations of new and improved functions are replaced by software
solutions (anyone can think of dozens of examples in the area of consumer
electronics). The theory of hybrid systems aims at providing a semantic
basis for a new generation of wide-spectrum formal specification languages
in which all relevant elements in a design of an embedded software system
can be described formally in an integrated way. In order to be accepted
by software and control engineers in industry, these new languages should
contain (close variants of) design notations that are currently used as sub-
languages. The role of hybrid system theory will mainly be one of glue by
which different design notations can be formally related.

It 1s well known that the formalization step is a major source of errors
in the design of critical software; therefore an important consideration in
the design of a specification language is the readability of the expressions
written in it. From this perspective, the work on graphical specification
languages for hybrid systems is quite important.

4. WORK AT CW]

Central to the approach of the Concurrency and Real-time Systems group at
CWI is the I/O automata model of N.A. Lynch and M. Tuttle. Lynch and
F.W. Vaandrager extended this model for reactive systems to the setting of
real-time and hybrid systems. Below we will first briefly outline the main
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features of this extension and then discuss a practical application.

4.1. Twmed transition systems

In the theory of reactive systems, a central role is played by the notion of a
transition system (TS). A TS consists of a set of states, a subset of wnitial
states, a set of (discrete) actions, and a set of (discrete) transitions, which
are triples

(l /
S — S

specifying that from state s the system can evolve to state s’ by the instan-
taneous occurrence of the action a. A run of a TS starts in an initial state.
The system jumps from state to state via instantaneous transitions, and in
between these transitions, it can remain arbitrarily long in any state.

At the lowest level, timed and hybrid systems can be described by TS’s
with as an additional component a collection of time transitions, which are
triples

(1 /
S —> tq

specitying that from state s the system can evolve in a positive, real-valued
amount of time d to state s’. In the model of timed transition systems (TTS)

of Lynch and Vaandrager, two axioms are imposed on time transitions. The

. . n . . . cl d’
first axiom states that if there are time transitions s — s’ and s’ — s’’. there
3

: . .. d+d’ .. . . .
exists a time transition s — s''. The second axiom, which is a bit more

: .. . (l
involved to state, postulates that for each time transition s — s’ there

exists a trajectory, a function w that specifies an intermediate state for each
intermediate point in time, such that w(0) = s, w(d) = ¢, and for all
t,t' € 10,d] with t < t’,

' —t

| b /
w(t) — w(t'). 313

Thus a trajectory describes how the system evolves from s to s'. A run of
a TTS consists of a sequence of two-phase steps. The first phase of a step
corresponds to a continuous state transformation described by a trajectory.
In the second phase the state is submitted to a discrete change taking zero
time described by a discrete transition. _

We can add more structure to timed transition systems by defining states
to be pairs (&, ) of a vector X of discrete variables and a vecor i of con-
tinuous variables. In a discrete transition both the discrete and continuous
variables can be changed. However, in a time transition only the continuous
variables may change. In the timed automata model of Alur and Dill, which
1s widely used for the description and analysis of real-time systems, all time
transitions are of the form
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Z,9) = (T,7+ d),

where § + d is the vector obtained by adding d to each of the variables in
vector y. In this model, the continuous variables behave as perfect logical
clocks, whose values increase with the same rate as time. In the timed
transition systems associated to the more general models of hybrid automata
(see the paper of Alur et al. in [4]), the way in which the continuous variables
change can be specified via differential equations. In figure 2, an example is
presented of a hybrid automaton modelling the temperature control system
of a nuclear reactor.

In [1], D.J.B. Bosscher, 1. Polak and Vaandrager develop a language for
the specification of linear hybrid automata, and define the semantics of this
language via a translation to timed transition systems.

4.2. An application

In [1], the theoretical work on linear hybrid systems has also been applied
to solve a problem from Philips. This application will be briefly discussed
below.

Fully fledged computer networks are standard features in today’s con-
sumer electronics, like the Philips 900 audio system (see also figure 3). These
networks make 1t possible for the different devices to talk to each other, and
to offer a series of new, useful services to the consumer. A consumer can for
instance wake up the whole system by touching a single button: there is no
need to switch on the tuner first, then the CD player, then the amplifier,
etc. Instead the system will do this job by broadcasting a ‘wake up’ mes-
sage over the network. The main technical difficulty in building the network
for the Philips 900 audio system was that it had to be cheap: consumers
are only willing to pay a tiny bit more for the additional services provided
by the network. In fact, the only additional hardware that Philips needs
to 1implement in the network consists of a few transistors, resistors, etc.,
for the bus interface. The software runs on microprocessors that have to
be present anyway. Because the clocks of these microprocessors drift, and
because sometimes the programs dealing with the network have to wait for
other programs that run on the same microprocessors, the network protocol
has to deal with a significant uncertainty in the timing of events. In fact,
Philips allows for a tolerance of 1/20 on all the timing.

At CWI, correctness was proved of part of the Easylink real-time proto-
col used by Philips to achieve reliable commmunication between the devices
despite this very large timing uncertainty. The protocol is modeled as a
linear hybrid automaton, with continuous variables to represent the drift-
ing logical clocks of the sender and receiver in the protocol. Formally, the
drifting is expressed by the requirement that the first derivative of the clock
variables is in the interval |1 — T,1 + T], where T is the tolerance on the
timing. Correctness of the protocol has been proved if the tolerance is less
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Figure 3. Philips 900 audio system. (Photo: courtesy n.v. Philips Industrial Activities
Leuven.

than 1/17. This value is larger than the tolerance of 1/20 that is allowed
by Philips. A counterexample shows that the protocol fails for tolerance
ereat qual to 1/17.

In order to manage the complexity of real world applications, mechanical
support 1s absolut ssential. Theretore, much of the research effort on
hybrid systems is currently devoted to the development of mechanical tools
that support specification and verification. At CWI, W.O.D. Griffioen has
succeeded 1 mechanically checking the complete verification of the audic
control protocol using the general purpose theorem proving tool LPP. Ar
npressive complementary result has recently been obtained by P.-H. Hc
and Wong-To1 from Cornell University. Based on the CWI modelling of
the Philips protocol, they verified an instance ftully automatically using

the HY''EcH symbolic model checker, and also synthesized automatically
maximum clock drift of 1/17. Independ

g
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¥
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th ntly, C. Daws and S. Yovi
from Grenoble have also v
INRONOS tool.

rified the protocol fully automatically using the
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